Entropy Change of Reactions at Constant Temperature and Pressure

For a chemical reaction run at constant temperature and pressure, the reaction's effect on the entropy of the surroundings can be calculated by the equation

$$\Delta S_{\rm surroundings} = -\Delta H/T$$

where ΔH is the reaction's enthalpy, and the negative sign is inserted to show the reaction's effect on the surroundings.

✓ Substituting into $\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$

$$\Delta S_{\text{total}} = \Delta S_{\text{system}} - \Delta H/T$$

✓ Multiplying through by *T* and defining $\Delta S_{\text{system}} = \Delta S$

$$T\Delta S_{\text{total}} = T\Delta S_{\text{system}} - \Delta H$$

$$T\Delta S_{\text{total}} = T\Delta S - \Delta H$$

Gibbs Free Energy, G

J. Willard Gibbs (1839-1903)

The Gibbs free energy is defined by the relationship

$$G = H - TS$$

For a chemical reaction at constant pressure and temperature,

$$\Delta G = \Delta H - T \Delta S$$

✓ From our previous result $T\Delta S_{\text{total}} = T\Delta S - \Delta H$, we see

$$\Delta G = -T\Delta S_{\text{total}}$$

ΔG and Spontaneity

- ✓ If $\Delta G < 0$, the reaction is spontaneous as written.
- ✓ If $\Delta G > 0$, the reaction is non-spontaneous as written, but is spontaneous in the reverse direction.
- ✓ If $\Delta G = 0$, the reaction is at equilibrium.

Free Energy Through a Reaction

As a spontaneous reaction proceeds, it releases free energy until it reaches a minimum at equilibrium, at which point $\Delta G = 0$.

Progress of Reaction

Factors that Favor a Spontaneous Reaction

- ✓ Reactions with ΔH < 0 favor spontaneity.
- Reactions that increase randomness ($\Delta S > 0$) favor spontaneity.

Reaction (at 298 K)	Δ <i>H</i> (kJ/mol)	TΔS (kJ/mol)	ΔG (kJ/mol)
$H_2(g) + Br_2(g) \rightarrow 2HBr(g)$	-72.46	+34.00	-106.46
$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$	-571.66	-97.25	_474.41
$2N_2(g) + O_2(g) \rightarrow 2N_2O(g)$	+163.2	-44.10	+207.30
$H_2(g) + I_2(s) \rightarrow 2HI(g)$	+51.88	+49.26	+2.62
$N_2O_4(g) \rightarrow 2NO_2(g)$	+58.02	+52.63	+5.4

- Gas-phase reactions in which the sum of coefficients is higher for products than reactants have $\Delta S > 0$, favoring a spontaneous reaction.
- Gas-phase reactions in which the sum of coefficients is lower for products than reactants have $\Delta S < 0$, favoring a non-spontaneous reaction.
- \checkmark The sign on ΔS is not easily predicted if the sum of coefficients is the same on both sides.

ΔG and Temperature

- Since $\Delta G = -T\Delta S_{\text{total}}$, higher temperatures, which result in greater randomness, favor spontaneity, and lower temperatures, which foster greater order, disfavor spontaneity.
- Assuming little change in ΔH and ΔS with temperature, by $\Delta G = \Delta H T\Delta S$ we see that changing temperature affects the value of ΔG and may affect the spontaneity of the reaction.

Interplay of ΔH , ΔS , and T in $\Delta G = \Delta H - T\Delta S$

ΔH	ΔS	ΔG	Spontaneity
_	+	_	Spontaneous at all temperatures
+	_	+	Non-spontaneous at all temperatures
_	_	- at low T + at high T	Spontaneous at low temperatures Non-spontaneous at high temperatures
+	+	+ at low T – at high T	Non-spontaneous at low temperatures Spontaneous at high temperatures

Standard Free Energies

- The standard free energy change of a process, ΔG° , is defined under conditions of 25 °C and 1 atm with all reactants and products in their standard states.
- We can apply the Law of Hess to obtain the ΔG° value for a reaction from values of the standard free energies of any set of reactions that add to give the overall reaction of interest.
- The most useful set of tabulated data is the standard free energies of formation, ΔG°_{f} .

Standard Enthalpy of Formation, ΔG°_{f}

- ΔG_f° values are defined as the change in standard free energy when one mole of compound is formed from its elements in their standard state.
- $\Delta G_f^{\circ} = 0$ for any element in its standard state.
- $\triangle G^{\circ}$ for any reaction may be calculated as

$$\Delta G^{o} = \sum n \Delta G^{o}_{f}(\text{products}) - \sum m \Delta G^{o}_{f}(\text{reactants})$$

Absolute Entropies and the Third Law

Walther Nernst, 1906

- At the absolute zero of temperature, a perfect crystal would have S = 0.
- There are no perfect crystals, and absolute zero is unattainable; therefore, all substances have positive absolute entropies at all real temperatures.

Lewis and Randall's Classic Statement of the Third Law¹

If the entropy of each element in some crystalline state be taken as zero at the absolute zero of temperature, every substance has a finite positive entropy; but at the absolute zero of temperature the entropy may become zero, and does so become in the case of perfect crystalline substances.

✓ Absolute entropies can be calculated from the temperature variation of heat capacities

¹G. N. Lewis and M. Randall, *Thermodynamics*, McGraw-Hill, New York, 1923.

Standard Absolute Entropy, S^o

- The **standard absolute entropy** of a substance, S° , is the entropy of the substance in its standard state at 25 °C and 1 atm.
- The ΔS° for a reaction can be calculated from these data as

$$\Delta S^{o} = \sum nS^{o}(\text{products}) - \sum mS^{o}(\text{reactants})$$

Note that the absolute entropy of an element is *not* zero, and the absolute entropy of a compound *cannot* be calculated from the absolute entropies of its elements.

Non-Standard Conditions

- Values for ΔH and S generally show only small changes with temperature.
 - This allows us to use data for ΔH° and S° to estimate values of ΔG at other temperatures and to make predictions about spontaneity under those conditions.

Gibbs Free Energy Under Non-Standard Conditions

The value of ΔG under non-standard conditions can be calculated from ΔG° by the equation

$$\Delta G = \Delta G^{o} + RT \ln Q$$

Under standard conditions, all species have unit activity (effective concentrations or pressures of 1). Therefore under standard conditions, Q = 1, $\ln Q = 0$, and $\Delta G = \Delta G^{\circ}$.

ΔG and Equilibrium

At equilibrium, $\Delta G = 0$ and Q = K; therefore,

$$\Delta G^{\rm o} = -RT \ln K$$

$$K = \exp(-\Delta G^{\circ}/RT)$$

- K in this equation is the *thermodynamic* equilibrium constant, defined in terms of the *activities* of participants in their standard states.
 - \bullet *K* is inherently unitless.
 - For gas-phase reactions, K is approximately K_p .

Relationship Between ΔG° and K

$\Delta G^{\rm o} > 0$	<i>K</i> < 1
$\Delta G^{\rm o} = 0$	K=1
$\Delta G^{ m o} < 0$	<i>K</i> > 1

$\Delta G^{ m o}$ and $E^{ m o}_{ m cell}$

Free energy and cell potential are related by the equation

$$\Delta G^{\rm o} = -n \mathscr{F} E^{\rm o}_{\rm cell}$$

✓ In using this equation, recognize that

$$1 \mathcal{F} = 96,500 \text{ C/mol} = 96,500 \text{ J/V·mol}$$

✓ Spontaneity is related to E°_{cell} and ΔG° as follows:

$E^{\circ}_{\text{cell}} > 0$	$\Delta G^{\circ} < 0$	spontaneous
$E^{\rm o}_{\rm cell} = 0$	$\Delta G^{\rm o} = 0$	equilibrium
$E_{\rm cell}^{\rm o} < 0$	$\Delta G^{\rm o} > 0$	non-spontaneous

 $\checkmark \quad \text{From } \Delta G^{\text{o}} = -n\mathscr{F}E^{\text{o}}_{\text{cell}} = -RT \ln K$

$$ln K = \frac{n \mathcal{F} E^{\circ}_{\text{cell}}}{RT}$$
 or $\log K = \frac{n E^{\circ}_{\text{cell}}}{0.0592}$